
Porting the Spherical Harmonic Transform to Xeon Phi
(MIC)

Vincent Boulos, Nathanael Schaeffer

October 23, 2013

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 1 / 13

Outline

1 Status before porting

2 Strategy and difficulties

3 Outlook and real-life usage

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 2 / 13

Spherical Harmonic Transform (SHT)

Definition

Spherical Harmonic of degree ` and order m, defined on the sphere :

Ym
` (θ, φ)

Eigenfunction of the Laplace operator on the sphere :

∆Ym
` = −`(`+ 1)Ym

`

They form an orthonormal basis

f (θ, φ) =
∑
`,m

Qm
` Ym

` (θ, φ)

Qm
` =

∫ ∫
f (θ, φ)Ym

` (θ, φ) sin(θ)dθdφ

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 3 / 13

Spherical Harmonic Transform (SHT)

Definition

Spherical Harmonic of degree ` and order m, defined on the sphere :

Ym
` (θ, φ)

Eigenfunction of the Laplace operator on the sphere :

∆Ym
` = −`(`+ 1)Ym

`

They form an orthonormal basis

f (θ, φ) =
∑
`,m

Qm
` Ym

` (θ, φ)

Qm
` =

∫ ∫
f (θ, φ)Ym

` (θ, φ) sin(θ)dθdφ

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 3 / 13

Application for numerical simulations

Advantages

Spectral convergence

Exact derivatives

Boundary conditions for a magnetic field are straightforward.

Drawback

As of today, Gauss-Legendre algorithm is the best choice (complexity
∼ `3

max), which means that for high resolution you’ll spend most of your
time performing SHT !

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 4 / 13

Application for numerical simulations

Advantages

Spectral convergence

Exact derivatives

Boundary conditions for a magnetic field are straightforward.

Drawback

As of today, Gauss-Legendre algorithm is the best choice (complexity
∼ `3

max), which means that for high resolution you’ll spend most of your
time performing SHT !

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 4 / 13

Implementation

Analysis (forward)

Many Fourier transforms along φ, followed by lots of independent (m, θ)
series of Legendre polynomial evaluations, which are then summed over θ
(quadrature, reduction).

f mn =

∫ 2π

0

∫ π

0
f (θ, φ)Pm

n (cos θ)e imφ sin θ dθ dφ (1)

Synthesis (backward)

Lots of independent (m, θ) series of Legendre polynomial evaluations,
summed over `. Followed by many Fourier transforms along φ.

f (θ, φ) =
N∑

m=−N

 N∑
n=|m|

f mn Pm
n (cos θ)

 e imφ (2)

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 5 / 13

SHTns library

Spherical Harmonic Transform on steroids

Hand-vectorized (SSE2, AVX) using GCC vector extensions.

Multi-threaded via OpenMP.

Self-tuning (chooses the best of several variants).

Compute-bound (on-the-fly generation of Legendre polynomials).

80% to 90% of peak performance.

N. Schaeffer, Efficient Spherical Harmonic Transforms aimed at pseudo-spectral numerical

simulations, Gcubed, 2013.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 6 / 13

First step: compiling with ICC

problems

CPU: 3 times slower because lack of GCC vector extensions (icc 13)

MIC: did not compile with -mmic

go ask your question on the intel developper forum !

solutions

the intel developper forum is very useful.

icc 14 (still in beta) supports GCC vector extensions.

compilation with -mmic works after simplification of (non-essential)
code.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 7 / 13

First step: compiling with ICC

problems

CPU: 3 times slower because lack of GCC vector extensions (icc 13)

MIC: did not compile with -mmic

go ask your question on the intel developper forum !

solutions

the intel developper forum is very useful.

icc 14 (still in beta) supports GCC vector extensions.

compilation with -mmic works after simplification of (non-essential)
code.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 7 / 13

First step: compiling with ICC

problems

CPU: 3 times slower because lack of GCC vector extensions (icc 13)

MIC: did not compile with -mmic

go ask your question on the intel developper forum !

solutions

the intel developper forum is very useful.

icc 14 (still in beta) supports GCC vector extensions.

compilation with -mmic works after simplification of (non-essential)
code.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 7 / 13

Second step: FFT on MIC

MKL available on MIC

FFT available in MKL, with FFTW interface

problems

Nowadays, the performance of the FFT is rather memory bound.

Performance on GPU or MIC is far from peak computing performance.

On MIC, do not expect more than 100Gflops for the FFT (1000
Gflops is the peak).

MIC is still better than CuFFT (Nvidia GPUs).

performance very sensitive to data layout !!

http://software.intel.com/en-us/articles/tuning-the-intel-mkl-dft-functions-performance-on-intel-xeon-phi-coprocessors

https://developer.nvidia.com/cufft

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 8 / 13

Step 3: Vectorization on MIC

GCC vector extensions (gcc 4+, icc 14+)

defines vector types holding several scalar values

use these vector types as if they were scalar (=, +, -, *, /)

dramatically reduces the use of intrinsics (e.g. for reduction)

allow normal compiler optimization.

portable

benefit of hand-vectorized code

MIC has 64 bytes vectors, that is 8 double precision values treated
together.

x2 to x4 overall performance gain compared to auto-vectorized code
(including FFT)

http://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 9 / 13

Step 3: Vectorization on MIC

GCC vector extensions (gcc 4+, icc 14+)

defines vector types holding several scalar values

use these vector types as if they were scalar (=, +, -, *, /)

dramatically reduces the use of intrinsics (e.g. for reduction)

allow normal compiler optimization.

portable

benefit of hand-vectorized code

MIC has 64 bytes vectors, that is 8 double precision values treated
together.

x2 to x4 overall performance gain compared to auto-vectorized code
(including FFT)

http://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 9 / 13

Step 4: Offloading

For large programs and high performance computing, offloading seems
mandatory, to allow several nodes to work together (MPI).

Looks very easy to do: #pragma offload

We have not had much time to work on that

it is not straightforward to contol allocation and copies on the MIC...

there are still some compiler bugs

memory transfer seems slower and less flexible than with OpenCL

is it possible and easy to do transfer/compute overlap ?

Work still required to make the SHT work well in offload mode

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 10 / 13

Other remarks

OpenMP thread scheduling

It is possible to control how openmp threads are distributed among cores.
I use explicit omp get thread num() which works best (also on cpu).

avoid large private arrays

the analysis algorithm had to be slightly adjusted to get top performance,
by using reduction (mm512 reduce add()) inside the inner loop, while on
cpu it is better to postpone it later. This is due to the high number of
threads requiring more memory.

do not necessarily precompute

If a few multiply and add is involved to compute values, do not store them.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 11 / 13

Other remarks

OpenMP thread scheduling

It is possible to control how openmp threads are distributed among cores.
I use explicit omp get thread num() which works best (also on cpu).

avoid large private arrays

the analysis algorithm had to be slightly adjusted to get top performance,
by using reduction (mm512 reduce add()) inside the inner loop, while on
cpu it is better to postpone it later. This is due to the high number of
threads requiring more memory.

do not necessarily precompute

If a few multiply and add is involved to compute values, do not store them.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 11 / 13

Other remarks

OpenMP thread scheduling

It is possible to control how openmp threads are distributed among cores.
I use explicit omp get thread num() which works best (also on cpu).

avoid large private arrays

the analysis algorithm had to be slightly adjusted to get top performance,
by using reduction (mm512 reduce add()) inside the inner loop, while on
cpu it is better to postpone it later. This is due to the high number of
threads requiring more memory.

do not necessarily precompute

If a few multiply and add is involved to compute values, do not store them.

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 11 / 13

Concluding remarks

about Xeon Phi

It was more work than expected (intel forums are helpful)

It is definitely less work than porting to OpenCL.

DGEMM is very fast, do you need it ?

FFT does not shine (intel, please improve the fft !)

has still some drawbacks of GPUs (slow memory transfers). Get rid of
PCIe ?

about SHT on Xeon Phi

currently, it is only faster when used in native mode.

but memory is then limited.

interesting for desktop users, astrophysics application (very large
sizes).

not sure about heavy simulations on hpc clusters (ivy bridge is better).

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 12 / 13

Concluding remarks

about Xeon Phi

It was more work than expected (intel forums are helpful)

It is definitely less work than porting to OpenCL.

DGEMM is very fast, do you need it ?

FFT does not shine (intel, please improve the fft !)

has still some drawbacks of GPUs (slow memory transfers). Get rid of
PCIe ?

about SHT on Xeon Phi

currently, it is only faster when used in native mode.

but memory is then limited.

interesting for desktop users, astrophysics application (very large
sizes).

not sure about heavy simulations on hpc clusters (ivy bridge is better).

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 12 / 13

Synthesis time comparison

size (`max) cpu 16c mic mic offload tesla m2090 tesla m2090 (2q)
511 1.4 1.5 4.25 2.46

1023 8.9 7.2 16.3 19.3 11.0
2047 62 74.2 117 104.3 68.5
4095 446 296 885 709 547
8191 2050 6850

Table 1 : Time in milliseconds to complete a spherical harmonic synthesis on
various devices and for various sizes. cpu 16c is a 16 core 2.7GHz SandyBridge
platform. tesla m2090 with OpenCL (synthesis only) includes the memory
transfer (30% to 40%). 2q: using transfer compute overlap (2 opencl queues).
Note that for 511 and 1023, the best times were obtained with ”transposed” fft
on the mic.

MIC offload is the slowest (so far, could probably be better)

MIC native is often fastest (strongly depends on data layout and fft
performance !)

V. Boulos, N. Schaeffer SHT on MIC October 23, 2013 13 / 13

	Status before porting
	Strategy and difficulties
	Outlook and real-life usage

